
                                        1/12 

Will Moore’s Law be Sufficient? 
 

Erik P. DeBenedictis, Sandia National Laboratories 
 

 
Abstract—It seems well understood that supercomputer 

simulation is an enabler for scientific discoveries, weapons, and 

other activities of value to society. It also seems widely believed 

that Moore’s Law will make progressively more powerful 

supercomputers over time and thus enable more of these 

contributions. This paper seeks to add detail to these arguments, 

revealing them to be generally correct but not a smooth and 

effortless progression. 

This paper will review some key problems that can be solved 

with supercomputer simulation, showing that more powerful 

supercomputers will be useful up to a very high yet finite limit of 

around 1021 FLOPS (1 Zettaflops). The review will also show the 

basic nature of these extreme problems. 

This paper will review work by others showing that the 

theoretical maximum supercomputer power is very high indeed, 

but will explain how a straightforward extrapolation of Moore’s 

Law will lead to technological maturity in a few decades. The 

power of a supercomputer at the maturity of Moore’s Law will 

be very high by today’s standards at 1016-1019 FLOPS (100 

Petaflops to 10 Exaflops, depending on architecture), but 

distinctly below the level required for the most ambitious 

applications. 

Having established that Moore’s Law will not be that last 

word in supercomputing, this paper will explore the nearer term 

issue of what a supercomputer will look like at maturity of 

Moore’s Law. Our approach will quantify the maximum 

performance as permitted by the laws of physics for extension of 

current technology and then find a design that approaches this 

limit closely. 

We study a “multi-architecture” for supercomputers that 

combines a microprocessor with other “advanced” concepts and 

find it can reach the limits as well. This approach should be quite 

viable in the future because the microprocessor would provide 

compatibility with existing codes and programming styles while 

the “advanced” features would provide a boost to the limits of 

performance. 

I. THE NEED FOR FLOPS 

HIS paper is concerned with the use of computers for the 

“simulation of physics on a computer.” Simulation 

involves understanding the behavior of an object that can exist 

in the physical space of our universe and is the largest but not 

the only use of supercomputers today (major exceptions being 

databases and the use of computers for cracking cryptologic 

codes). 

There have been a variety of efforts in the last couple years 

to identify future needs for large supercomputers, some of 

which are plotted in figure 1. In general, these efforts reveal a 

continuum of applications weighted toward low performance, 

but including key applications at about 1021 FLOPS (1 

Zettaflops). 

A. The SCaLeS workshop and report [SCaLeS 03, and 

plotted in figure 1] reviewed 10 applications areas, seeking 

and finding support for valuable science from supercomputers 

100× and 1000× today’s performance (or 100 Teraflops and 1 

Petaflops). 

B. NASA performed a study [NASA 99, and plotted in 

figure 1] of the speed needed in a future supercomputer that 

would permit it to compute fast enough that an engineer 

operating it would not have their thinking impeded by 

supercomputer slowness. This report concludes the computer 

T 

2000 2020 

1 Zettaflops 

100 Exaflops 

10 Exaflops 

1 Exaflops 

100 Petaflops 

10 Petaflops 

1 Petaflops 

100 Teraflops 

Figure 1. Supercomputer applications and technology projections. 

 

2000 2010 2020 2030 Year � 

↑ � µP–125× below 100kBT 
limit (figure 3, second column) 

↑ � Best-case logic–100kBT 
limit (figure 3, first column) 

� Quantum Dots/ 

Reversible Logic µP (green) 
Best-case logic (red) � 

[DeBenedictis 04b] 

Plasma Fusion 
Simulation 

[Jardin 03] 

Compute as fast as 
the engineer can 

think 

[NASA 99] 

Full Global Climate 
[Malone 03] 


 G

eo
d

at
a 

E
ar

th
 �

 

 S
ta

ti
o

n
 R

an
g

e 
  

  
[N

A
S

A
 0

2
] 

2010 

No schedule provided by source 

System 

Performance 
Applications Technology 

 

↓ 100× ↑1000× [SCaLeS 03] 

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of 
Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 

 
0-7695-2153-3/04 $20.00 (c)2004 IEEE 

SAND2004-3409C 



                                        2/12 

should be about 1018 FLOPS (1 Exaflops). This resource 

would be dedicated to a single engineer at a time, meaning the 

computer center would need many times this power to serve 

many engineers. 

C. Research toward the generation of electric power by 

controlled nuclear fusion often rates as the second largest 

potential consumer, peaking at 3×1020 FLOPS in [Jardin 03, 

and plotted as ellipses in figure 1]. These are simulations of 

Hydrogen-containing plasmas at temperatures high enough for 

nuclear fusion. 

D. The processing of Earth climate data appears to be the 

FLOPS leader at present. These are efforts aimed at collecting 

and storing worldwide information on the Earth, such as 

atmospheric, oceanic, and biological information collected by 

satellites and using this data as boundary conditions for 

forecasting future weather and climate. The SCaLeS report 

[Malone 03, and plotted in figure 1] gives a peak FLOP rate of 

1021 FLOPS (1 Zettaflops, but actually a range of 1020-1022 

FLOPS). A NASA report [NASA 02, and plotted in figure 1] 

gives a range of 1016-1021 FLOPS. 

II. DEFINING SIMULATION OF PHYSICS ON A COMPUTER 

The applications defined above use a variety of 

computational methods, such as Finite Difference, Finite 

Element, Particle-In-Cell, etc., but many of these fall within 

the overall method of “simulating physics on a computer” very 

eloquently defined by Richard Feynman [Feynman 82]. This 

class of applications places specific demands on the 

architecture of the underlying computer. Figure 2 illustrates 

the division of space into a series of regions, or cells. Each cell 

holds the state of a particular region of space, such as the 

particles in a fusion plasma or the composition and motion of 

air or water. The computer simulates the evolution of space by 

updating the state of each cell for an interval ΔT, based on the 

computer evaluating the applicable laws of physics. 

This general class of calculation consumes resources on the 

computer in a particular ratio. Specifically, during each ΔT 

time step, the laws of physics are evaluated for the entire 

contents of the state memory. These evaluations will require 

access to the state in neighboring cells in accordance with the 

underlying geometry of the problem (i. e. a 3D simulation will 

require “nearest neighbor” communications between cells with 

“nearest neighbor” being defined in accordance with a 3D 

layout). 

Reality is slightly more complex, however. Real algorithms 

need to identify when the calculation completes, adjust ΔT, 

etc. This step varies by algorithm, but typically involves a 

simple calculation (like addition or max) over some parameter 

of the entire simulation space. The MPI Allreduce function 

[MPI web] is a popular way of doing this and will be used as 

an example in this paper. As illustrated in figure 3, a more 

complete description of the calculation involves processors 

evaluating the laws of physics on K cells, followed by a 

communications event across the entire machine. 

Some problems are further complicated by an “outer loop” 

for optimization or iteration. A problem may be to find the 

optimal solution for something, such as the human change to 

the Earth that would best mitigate global warming. A typical 

calculation of this sort involves many repetitions of the 

calculation described above with little interaction between the 

repetitions. The lack of interaction makes architectural issues 

more straightforward. 

III. QUANTIFYING THE END OF THE CURRENT TREND FOR 

SUPERCOMPUTER PERFORMANCE 

The issue of the “End of Moore’s Law” has been 

extensively studied in general and the results are quite 

voluminous. However, supercomputers doing “simulation of 

physics on a computer” stress the underlying technology in a 

specific way and lead to a readily understood and intuitive 

limit. The limit for supercomputing is that the system 

consumes progressively more power until the operator can no 

longer afford the electric bill. 

Sijk   

 

Cell with 
“state” of space, 

BCell Bits 

Laws of Physics 

St+Δt = 

f(St, neighbors) 

 

Figure 2. Simulation of Physics on a Computer. Each cell is 
comprised of BCell bits of computer memory representing the 
state of spatial area or volume in the problem. The computer 

updates the contents of each cell repeatedly for time intervals ΔT. 

Figure 3. Organization of a Time Step. Each computer “node” 
evaluates the laws of physics for a group of K cells. 
Subsequently, all the nodes in the application synchronize and 
exchange data about ΔT and/or termination of the algorithm. 

Cell0 Cell1 CellK-1 

… 

Node 0: 

Cell0 Cell1 CellK-1 … 

Node 1: 

Cell0 Cell1 CellK-1 … 

Node N/K: A
ll

re
d

u
ce

 

TIME → 



                                        3/12 

Irrespective of device miniaturization, the type of logic in 

use today requires a minimum amount of heat generation to 

avoid spontaneous glitches due to thermal noise. The attribute 

of computer logic is not new; von Neumann understood it at 

the time the computer was invented [von Neumann 56]. We 

expect computer logic not to make spontaneous errors 

(glitches). Furthermore, the consequence we impose for a 

glitch is that we replace the computer. Since computers have a 

finite life expectancy, this suggests that the probability of a 

glitch be less than one in the total number of logic operations 

the computer will perform in its lifetime. A 100 Exaflops 

supercomputer expected to run ten years without error would 

require a reliability of one error in about 1033 operations. To 

avoid over specificity, let us just say reliability must be less 

than one glitch in 1030-1040 operations. 

The experience we will have with semiconductor reliability 

over the next dozen years is similar in many ways to driving 

out of town in a car while listening to FM radio: as we drive 

further away from the radio station, the initially clear signal 

acquires a “hiss” which grows over time until it obscures the 

signal and we turn the radio off. 

This noise comes from the first amplifying transistor in the 

FM radio: this transistor is exposed to both the radio signal 

from the antenna and the thermally induced noise signal from 

the vibrating electrons in its own structure. The antenna signal 

weakens as we drive out of town, causing the noise signal to 

grow in proportion. 

The transistors in a logic gate are similarly exposed to the 

signal from the preceding gate and thermal noise from their 

own electrons. While the magnitude of noise in logic gates is 

exactly the same as the noise in FM radios (its magnitude is 

kBT, where kB is Boltzmann’s constant of 1.38×10-23 and T is 

the temperature in Kelvins), Moore’s Law is causing the 

signal energy to decline exponentially with time (through 

subsequent generations of electronic technology). 

Logic gates are constantly comparing their input voltages 

against a threshold to determine whether they are receiving a 

“0” or “1.” The effect of noise is nil unless the noise signal 

makes an excursion in the opposite direction of the logic 

signal sufficient to exceed the threshold separating the logic 

levels. The probability of this occurring grows exponentially 

with the power of the noise signal. While the probability of 

Figure  4.  Limits on Supercomputers Set By The Laws of Physics. This chart derives the upper bounds on 
performance be derating the physical limits while simultaneously building up possible performance from 
known supercomputers and industry plans. A small region of uncertainty appears at the center. 

 

200 Yottaops 

(2×1026 ops/s) 

Landauer limit 

600KW/(kBT loge2) 

Esteemed 

physicists 

Derate limit 20,000 
convert logic ops to 

64-bit floating point 
10 Zetaflops 

(1022 FLOPS) 
(Floating point Landauer limit) 

100 Exaflops 

4 Exaflops 

1 Exaflops 

800 Petaflops 

32 Petaflops 

8 Petaflops 

80 Teraflops 

40 Teraflops  

Derate limit 150 
to achieve 

e-150 error rate 

Manufacturing 

margin 4× 

Improved devices 4× 

Projected ITRS 
improvement to 

22 nm 100× 

Lower supply 

voltage 2× 

Engineering 

Data 

Lack of Energy 
Recovery 
Circuitry 

Estimate 

Estimate 

ITRS 
Committee 

of Experts 

ITRS 
Committee 

of Experts 

Best-Case 
Logic 

Microprocessor 
Architecture 

Physical 
Factor 

Source of  

Authority 

Red Storm Contract 

Assumption: 
Supercomputer is size 
& cost of Red Storm: 
$100M budget; 
consumes 1.8 MW wall 
power; 600 KW to 

active components 

25 Exaflops 200 Petaflops 

Uncertainty 6× Gap in Chart 

E
x

p
er

t 
O

p
in

io
n

 

E
st

im
at

e 

 125:1 � 



                                        4/12 

misinterpreting a bit is dependent on many factors 

related to circuit design, a rule of thumb is to assume it 

will be e-E/kT (see [DeBenedictis 04a] for a full 

treatment). By this standard, a switching energy should 

be about 100kBT to meet the requirement of less than 

one glitch in 1030-1040 operations, per above. (By 

comparison, today’s circuits operate at about 

100,000kBT for a vanishingly small error rate of 10-

43,000.) 

Figure 4 derives the limits of a “normal size” 

supercomputer based on current technology from two 

complementary directions. The author’s model of a 

“normal size” supercomputer is the ASCI Red Storm 

system at Sandia, but Red Storm is of similar size to a 

“leadership” class supercomputer in a US 

supercomputer center: $100M construction budget, 

taking 1.8 MW electric power from the wall with 600 KW 

going to the active components. In figure 4 a physics analysis 

goes from the top down and a semiconductor industry 

projection goes from the bottom up. The two meet in the 

center with a small but instructive gap. 

The limits of computer logic (known as “irreversible logic”) 

have been known from the first days of computing. Von 

Neumann is generally credited with inventing modern 

computer logic, and it is clear that he understood its limits. 

However, a contemporary of Von Neumann’s, Landauer 

[Landauer 61], identified that these limits applied only to 

“irreversible” logic as opposed to logic in general. The kBT 

loge2 limit defined by Landauer yields the top number in 

figure 4 of 150 YOPS (YottaOPS, Yotta is the SI prefix for 

1024). 

However, today’s supercomputing is based on floating point 

not logical operations. A double precision operation in today’s 

logic if formed from about 20,000 logical operations, given a 

reasonable mix of adds and multiplies. This yields the second 

number in from the top in figure 4, 10 ZFLOPS (Zetaflops, 

Zeta is the SI prefix for 1021). 

An analysis of trends in the semiconductor industry 

proceeds up from the bottom of figure 4 and is based on the 

Semiconductor Industries Association’s (SIA’s) International 

Technology Roadmap for Semiconductors (ITRS) [ITRS 02] 

and summarized in table I. This is a study published each year 

setting goals for up to a dozen years in the future. We will 

start the upward extrapolation with the Red Storm system at 

Sandia, although most modern microprocessors would yield a 

similar result. Red Storm is built from 130 nm semiconductor 

technology and will achieve 40 Teraflops by purchase 

contract. The ITRS predicts an increase of 2× and 100× 

between 130 nm and the emergence of 22 nm technology in 

2016. This yields a preliminary peak of 8 Petaflops. 

However, the physical limits analysis presumes the 

theoretical best-case logic, or the logic with the best 

performance over the set of all possible arrangements of gates 

and transistors. By contrast, the ITRS analysis extrapolates the 

Red Storm system as designed with Opteron microprocessors. 

The advantage of a microprocessor over best-case logic is that 

it can be programmed after fabrication to address a variety of 

applications. One cannot say that the efficiency of best-case 

logic is fundamentally more important than the flexibility of a 

microprocessor or vice versa, so figure 4 has separate columns 

for the two approaches. The left column provides the 

performance limit for engineers willing to design their own 

custom logic, whereas the right column is the limit for 

programmers who wish only to program a microprocessor. 

Graphs � and � in figure 1 also illustrate the limits of 

microprocessor and custom logic: these graphs illustrate 

project performance improvements from ITRS projections but 

“flatlining” as the asymptotically approach the limits. It would 

be possible to design a “low power” microprocessor that 

bridges the gap between the columns [BGL web, Davis 04]. 

Figure 4 is thus left with a gap of two orders of magnitude 

representing the uncertainty in the opinions of experts on the 

potential upper limit on performance of supercomputers (i. e. 

1-100 Exaflops for best-case logic and 8-800 Petaflops for 

microprocessors – all applying to a supercomputer the size of 

Red Storm). While this gap is fairly wide, it is unlikely that 

the real limit will be at the wide extremes: 

All technologies require some tolerance for manufacturing 

variances, inefficiencies in wires, noise margins, and so forth. 

We will derate by 4× in this paper. (The only similar analysis I 

have found [Frank 99] used a derating factor of 12×. However, 

this analysis was seeking an “expected value” rather than a 

“limit” and so it is generally supportive of 4× as a limit.) 

Furthermore, the ITRS is only projecting the state of 

semiconductors in 2016, not the end of Moore’s Law. We 

similarly find no expert opinion on semiconductor progress 

beyond 2016, but let us guess it can deliver another 4× in 

performance improvement. 

While unverified by any authority other than the author, the 

two assumptions cut the gap to 6×. Given historical gains in 

computers over the years, a performance uncertainty of 6× for 

the end point is small. 

Figure 4 has direct applicability to the application examples 

presented earlier in this paper. To be specific, 100× and 1000× 

gains over today’s supercomputers are easily within bounds. 

However, a 1 Exaflops system for engineers [NASA 99] 

exceeds the limit for microprocessor-based solutions but might 

be possible with some advanced architecture. The Zetta scale 

TABLE I 
PROJECTIONS OF SEMICONDUCTOR PROPERTIES 

Year of Production 2010 2013 2016 

DRAM ½  Pitch (nm) 45 32 22 

MPU/ASIC ½ Pitch (nm) 50 35 25 

Physical Gate Length high-performance (HP) 
(nm) 

18 13 9 

Power-delay product for (W/Lgate=3) device 
[Cgate*(3*Lgate)*Vdd

2](fJ/device) 
0.015 0.007 0.002 

Static power dissipation per (W/Lgate=3) device 
(Watts/device) 

9.70E-8 1.40E-7 1.10E-7 

High-performance NMOS device t 
(Cgate*Vdd/Idd-NMOS) (ps) 

0.39 0.22 0.15 

 

White – Manufacturable solutions exist and are being optimized  

Yellow – Manufacturable solutions are knows  

Red – Manufacturable solutions are not known   

 



                                        5/12 

requirements for climate modeling and fusion simulations are 

around 100× above the limit for special purpose logic (10 

Exaflops×100 = 1 Zettaflops). It should be noted that figure 4 

is relative to the size of the user’s budget (taken as $100M) 

and can be raised by a proportionately larger budget. Thus a 

Zettaflops system based on custom logic should be possible 

for 100×$100M, or $10B. 

IV. BEATING THE LIMITS OF CURRENT TECHNOLOGY 

Figure 4 does not represent the end of progress in 

computing, but it merely the local maximum associated with 

today’s popular technology. There has been an extensive body 

of knowledge developed in the last several decades under the 

title “physics and computation” where the limits represented 

by figure 4 have been circumvented by clever developments. 

A full treatment of “physics and computation” to improve 

supercomputers is out of the scope of this paper (although 

discussed elsewhere [LACSI 04]), but is still relevant. This 

section will review and reference some of the technology 

components that would enable computing up to the Zettaflops 

level. However, I expect the reader to see that developing 

these technologies sufficiently would be a very expensive 

proposition. In the author’s view, such a large development 

expense would not be funded until there is a thorough review 

of the limits of current technology – which is the objective of 

this paper. 

Curve � of figure 1 is the natural performance curve that 

will result from Moore’s Law running its course. This is the 

curve of performance resulting from logic gates of the current 

design but with faster transistors. In current design 1’s and 0’s 

needed for the internal operation of the computer are created 

by drawing charge from one of the power supply rails. When 

the bit is no longer needed (such as due to its arrival at the 

other end of a wire), the signal is destroyed by releasing the 

charge into the other power supply rail with the entire 

switching energy being turned to heat in the process. As has 

been described earlier in this paper, the amount of energy must 

be greater than about 100 kBT for the computer to be reliable. 

This mechanism is the predominate source of power usage in 

today’s computers. 

While the 100 kBT energy limit is unchallenged, it is 

possible to “recycle” most of this energy. The approach is to 

power circuits not through a DC voltage but an AC clock 

signal generated by a resonator. The 1’s and 0’s are created by 

drawing 100 kBT energy from the resonator as it swings to one 

extreme. However, when a resonator reaches it limit in one 

direction, it also reaches the maximum of some force that will 

pull it back to the center and then to the other limit. Thus, 

most of the 100 kBT energy put into the logic each cycle is 

“pulled out” by the resonator at the end of the cycle. Resonant 

circuits can include Inductor-Capacitor (“LC”) tank circuits, 

MEMs resonators [Anantharam 04], and may someday include 

carbon nanotubes [Legoas 04] (which can oscillate at 

incredibly high frequencies). Logic families based on this 

principle have been developed for transistors [Seitz 85, 

Denker 94] as well as post-transistor devices. Managing 

energy in this way substantially reduces the heat generated per 

operation and permits more useful work per watt, but it comes 

at the cost of adding resonators to chips and redoing all logic 

designs from DC to AC power. 

The “recycling” above is limited by an unavoidable 

transformation of information into heat when information is 

destroyed [Landauer 61], and logic gates in use today (such as 

AND, OR, NAND, and NOR and known as “irreversible 

logic”) destroy information when they convert two or more 

inputs into a single output. The minimum energy for an 

irreversible logic gate is on the order of kBT loge2, or 150× 

below the 100 kBT limit discussed previously. This is known 

as the Landauer limit and is illustrated in figure 4. 

Even the Landauer limit can be beaten with more ambitious 

changes. Since the logic gates in use today require a minimal 

heat generation per the laws of physics, dropping below this 

heat level necessarily involves changing logic gates. There is a 

sizeable body of literature and some prototype circuits using 

“reversible” logic gates. These are gates with the same 

numbers of inputs as outputs and which do not destroy 

information. For example, a Fredkin gate [Fredkin 82] with 3 

inputs and 3 outputs simply exchanges two inputs in response 

to the third, yet has been shown to be a complete logic family. 

These principles of logic have been used to create arithmetic 

[Kim 01], microprocessors [Vieri 99], memories [Vieri 98], 

and a “C” like programming language [Frank 97b]. However, 

the computers are somewhat different from those today. For 

example, floating-point operations destroy information as a 

part of their normal operation: in aligning the operands for a 

floating-point add, the low bits of one of the numbers are 

shifted away and lost. Thus, there is no way to create a 

floating-point operation from gates that do not destroy 

information. However, there are methods for architecting a 

computer where whole calculations are done and then 

“undone” in order to restore the computer to the original state 

[Bennett 89]. 

The techniques outlined above may require a post-transistor 

switching device to provide real benefit. The author has 

searched diligently and unsuccessfully for a researcher that 

can claim or demonstrate that the benefits from the techniques 

above overwhelm various forms of added overhead. However, 

if one is willing to embrace post transistor devices such as 

Quantum Dots [Timler 03], Y-branch switches [Forsberg 03], 

Rod logic [Drexler 92], Helical logic [Merkle 96], or a dozen 

others, the performance ceiling rises considerably. Graphs � 

in figure 1 project performance for a system based on quantum 

dots in conjunction with all the methods given above [LACSI 

04]. These technologies reach the Zetta scale as required by 

applications, although they would have an impact on the 

design of computers reaching from the devices to software. 

V. CAN WE REACH THE LIMIT? 

Just because I have shown the laws of thermodynamics 

would not be violated by a supercomputer reaching the limits 

in figure 4, it remains to be shown how to reach this limit with 

known architectures being applied to the problem illustrated in 



                                        6/12 

figure 2. My approach is to compare the modeled running time 

of an application on two hypothetical computers. The 

modeling builds on work in applications modeling 

[Christopher 04a, Christopher 04b, Hoisie 00, Kerbyson 01, 

Petrini 03], or the prediction of the running time of 

applications on computers. One of these computers is the 

“Aerogel” computer model, or a model that can meet the 

maximum performance possible for any computer given the 

laws of physics. (The Aerogel model was developed by the 

author and appears to be unique, but others have sought 

computational models for similar purposes and come to 

comparable ends [Frank 97a].) The other is a fairly realistic 

model of a computer that would be constructed with integrated 

circuits available at some point in the future in accordance 

with semiconductor industry plans. If the performance of the 

realistic computer model is close to the “Aerogel” computer, 

we can conclude that we will be able to approach the limits of 

computing with technology we understand. 

Figure 5 illustrates the Aerogel computer model. A 

computer in this model is made of a series of elements, packed 

into a rectangular array on pitch Λ and each of which may 

contain a logic device or a bit of memory (thus being 

equivalent to one transistor). Λ is initially set to the cube root 

of the volume of a nominal logic transistor or DRAM cell (I 

am not too precise about the initial Λ because it is increased 

later, see below). An element with a logic gate is presumed to 

have a propagation delay τ and dissipate a certain amount of 

energy EGate every time it switches. The wiring in the model is 

via congestion-free channels that move data at the speed of 

light. This is illustrated in the figure by telescopes pointing in 

whatever direction is necessary and pass data via light pulses. 

Since the model is theoretical, programming is 

accomplished by a pencil and paper analysis. To program an 

Aerogel computer, each cell is designated to be either part of a 

logic gate or a memory cell. The interconnect is likewise 

programmed by designating the pointing direction of the 

telescopes. With this programming in place, one can calculate 

the running time for an application through applications 

modeling as a function of the speed of light delays and 

propagation delays. 

If we perform such an analysis using projected values for 

EGate and Λ spacing values corresponding to real transistors, 

we find that a computer will overheat and destroy itself in 

microseconds. To remedy the analysis, I specify that the 

computer in figure 5 is to be “pulled apart” or linearly 

expanded until the entire computer has sufficient surface area 

to be cooled. If one were to observe the resulting computer, it 

would be a series of transistors suspended in empty space with 

signals flowing via light pulses (or wires) between cells. If 

such a computer were actually constructed, it would be similar 

to an Aerogel (hence the name of the model). 

There are various cooling technologies available in practice, 

differing by the amount of heat that can be removed per unit 

of surface area. Table II is a very brief overview of the 

practical options considered in this paper. One must specify 

the capacity of the cooling system (in units of EGate that can be 

removed per square area of surface) in order to know how 

much to inflate the computer. Of course, the amount of 

inflation effects running time due to increased distances 

signals must travel at the speed of light. As a consequence, the 

running time will depend on the type of cooling specified. 

The running time of an algorithm on an Aerogel computer 

is essentially a measure of the algorithm’s complexity as 

determined by the laws of physics. To elaborate, computer 

science defines the “complexity” of an algorithm as the 

asymptotic dependence of running time on the size of the 

problem. The running time on an Aerogel computer is similar 

in some ways, but is additionally specified to an actual number 

(instead of merely the asymptotic dependence). Furthermore, 

the Aerogel computer model is much closer to physical reality 

than the model used in complexity theory: The Aerogel model 

includes the effects of the speed of light, cooling, and 

propagation delay whereas complexity theory merely counts 

operations. However, in spite of these differences, the formula 

for running time on an Aerogel computer is metric for the 

quality of an algorithm. We call the running time a 

“complexity metric.” 

  

  

Element   

    

  

  

Element 

Element 

Element 

    

  Element 

Element 

Element 

Element 

Figure 5.  Aerogel Computer Model. Cells represent either gates 
or memory locations. Cells communicate through optical pulses 
that travel at the speed of light without interference. 

Λ 

TABLE II 
COOLING SYSTEMS 

Method Cx Capacity 

Air 47 KW/m2 
Water 63.7 MW/m2 
Fractal Coolinga 1 GW/m2 
Pulseb ∞ 

aSubmicron ice particles encased in a polymer in hexane. 
The ice melts as the device is cooled. Theoretical study by 
[Drexler 92]. Quoted as 100 KW/cm2. bThe theoretical limit for 
a system that is operated intermittently. Equivalent in 
calculations to an infinite cooling capacity. 

 
 



                                        7/12 

VI. AN EXAMPLE 

We will develop the equation for applying the Aerogel 

model to an application as shown in figure 2 and defined by 

CPhysics, TPhysics, and EPhysics. We will also assign specific values 

to these parameters based on a popular supercomputing 

application and plot the results. 

The prototype application is a shock hydrodynamics 

application with the obscure name “CSQ to the Three Halves,” 

but widely known by its acronym CTH [CTH web]. CTH 

models moving materials, such as a bullet striking a target or 

gasses colliding at supersonic velocity. It was developed at 

Sandia and is reportedly the most popular supercomputer 

application for the Department of Defense (DOD). The results 

of this analysis are plotted in figure 6. 

The CTH program gives insight into practical parameter 

values. Parameter values depend on the number of materials 

being simulated, but we will restrict this analysis to a problem 

with two gasses: 

• Two gas problems use 240 bytes/cell. Thus, we use BCell = 

240 bytes = 1920 bits. 

• The number of floating point operations to evaluate the 

physics (called the “grind time”) has a mean of about 

3500 FLOPs and a standard deviation of 3500 FLOPs. We 

use these figures [Brightwell 04]. Thus we use 

MEAN{TPhysics} = 3500×200τ,  σ = 3500×200τ, CPhysics = 

100,000 elements, and EPhysics = 3500×20,000 EGate. 

• The CTH program exchanges all boundary cells (all 240 

bytes) 11 times during each time step. Thus, the 

bandwidth per iteration will be 11×BCell 

=21Kbits/cell/cycle. 

We will assume the applicable laws of physics per figure 1 

can be evaluated by a physics unit comprised of CPhysics 

elements in time TPhysics, producing EPhysics heat. To program 

this part of the Aerogel model, one would create a schematic 

diagram of floating-point adders, multipliers, etc. to evaluate 

the equations for the laws of physics in a manner similar to a 

signal processor. The equivalent network of gates would then 

replace each adder, multiplier, etc. The gates form the cells of 

the Aerogel model and the wiring translates into the 

directional pointing of the telescopes. 

Let us define a node as comprising a physics unit from the 

paragraph above, memory to hold K cells = K × BCell bits 

worth of state, and some accessing logic as described below. 

We will also assume 3√(N/K) is an integer, so that each node 

can simulate a cubical sub region of equal size. In figure 6, 

each element comprises one floating-point number of 64 bits, 

making the memory 64 K cells in size. 

We describe elsewhere [DeBenedictis 04a] how to construct 

a memory accessing system that is quite efficient compared to 

the physics unit and can be neglected. To be specific, the 

access pattern for the problem in question is entirely 

deterministic, permitting the use of a sequence counter 

comprised of ~log2K flip flops and a handful of gates. A 

deterministic access pattern substantially relaxes any “memory 

latency” constraint because memories can be prefetched as far 

ahead as is convenient. Architectures exploiting memory 

access pattern regularity have been explored elsewhere [Sair 

03]. Our conclusion is that delay time can be neglected due to 

overlap with other activities and that the number of cells and 

their power consumption will be less than a floating point unit. 

Assuming the problem involves floating point, this permits us 

to ignore the access logic without fear of changing the result 

of the analysis. 

However, it is worth noting that the result of all this is very 

similar to a traditional vector floating point unit. 

The computation time for a single time step is given below 

as the time for each node to evaluate its K cells plus the time 

for the global communications step, designated TAllreduce and 

described later: 

TStep = K × TPhysics + TSynch + TAllreduce 

The total number of elements in the supercomputer is given 

by 

N 
TSupercomputer = BCell × N + 

K 
× CPhysics 

The parameter TSynch represents waiting time due to the fact 

that TPhysics is a random variable and some nodes will take 

longer to execute their collection of K evaluations than others.  

TSynch = Φ-1(1-1/(N/K+1)) × K × TPhysics 

where Φ-1 is the inverse of the cumulative normal 

distribution. 

The time for the global communications step will be 

bounded from below by the time for a signal to traverse the 

physical structure of the supercomputer, given by 

LEdge = 3√TSupercomputer × Λ 

√3 × LEdge TAllreduce = 
c 

The equation above has proven to be controversial. Given 

that TSupercomputer ∝ N, a number of parallel computer advocates 

have objected to my claim that the optimal Allreduce running 

time is O(3√N) whereas they know of parallel computer 

algorithms that are O(log N). These views can be reconciled 

by the difference between the physically accurate Aerogel 

computer model and the mathematically abstract parallel 

computer model. 

Allreduce can be performed on a parallel computer by 

forming a binary addition tree of nodes, adding values from 

the nodes, and then broadcasting the result back using the 

same tree in reverse. Since the parallel computing model 

counts only sequential steps, the summation takes 2 log2N 

steps. 

However, the Aerogel model also counts the cost of 

communications. As N increases, the size of the computer 

increases as 3√N because the memory cells have finite size and 

must be packed in the three dimensions of the universe we live 

in. The communications time for Allreduce can never be less 

than the time required for a signal to cross the supercomputer 

when traveling at the speed of light, and this time is 

proportional to 3√N. 

So, what would happen if my critics tried to build a series of 

progressively larger parallel computers and then tried to 

measure Allreduce timing in order to verify the O(log N) 

running time? All the machines in this series would specify 



                                        8/12 

the same message passing latency between arbitrary nodes in 

the system. As machines become larger, the engineer would 

find progressively less time for the router to switch messages 

after the speed of light delay in the cabling was subtracted 

from the message latency. Above some size, the routing time 

would become negative and it would not be possible to build 

the machine. A similar experiment with an Aerogel computer 

would not have this problem. 

However, what about the time to perform the mathematics 

of reduction? In this case, the reduction is addition. Floating 

point formats can be designed such that floating point 

comparisons can be done with the same logic as integer 

comparisons. Furthermore, integer comparisons can be done in 

bit serial order, most significant bit first. This makes the 

calculation time negligible compared to the communications 

time [DeBenedictis 04a]. 

The final constraint relates to cooling. The equations below 

state that the heat flux that can be removed from the surface of 

the machine exceed the machine’s wattage 

N × EPhysics 
6 × Cx × LEdge

2 ≥ 
TStep 

We wrote a computer program to create a series of 

hypothetical supercomputers, each optimized to produce the 

best running time in accordance with the equations above. 

Figure 6 shows the output of this program, plotting the 

running times of various families of optimized supercomputers 

as a function of the memory depth K. 

The program explores supercomputers running one iteration 

in accordance with equations given previously with N=n×n×n 

for n=50,000 cell space, where the cells are distributed evenly 

onto N/K nodes. The supercomputer is a 3D solid pack of 

nodes when program explores families built from the Aerogel 

model (although inflated to meet cooling limits). 

Supercomputers are an assembly of chips of one or more 

nodes when the program explores realistic families. 

The program assumes same transistor specifications for 

both Aerogel and Realistic families. These come from the 

ITRS, summarized in Table I. The ITRS includes separate 

transistor specifications for high performance, low power, and 

memory (not shown in Table I), and the program uses these 

various transistors as appropriate. 

For the realistic family only, the program uses a maximum 

chip capacity and a maximum I/O bandwidth from the ITRS. 

Furthermore, the realistic model assumes a 3D packing of 

chips but where the machine volume per chip cannot be less 

than some fixed volume set by the volume of a chip plus heat 

sink in a standard configuration. 

The program’s output is constructed as follows: The 

program separately explores Areogel and realistic computer 

families, plotting the results in figure 6 with thin and thick 

lines. The program separately explores cooling by air, water, 

fractal plumbing, and by intermittent operation, with cooling 

capacities defined in Table II. The different cooling 

technologies are plotted in different colors. The program 

sweeps parameter K to form the horizontal axis. 

For each computer, the program optimizes the number of 

Figure 6. Results of Applications Modeling on Aerogel and Realistic Computer Models. Horizontal axis is the number of 
cells per “node,” representing systolic arrays, PIMs, MPPs, and uniprocessors. The graphs show execution time per time 
step (lower is better) for various type of cooling technology. Thin graphs are for Aerogel computer and think ones are for 
realistic model. Note Aerogel and realistic are the same except at the chart’s left. Also, air-cooling is worst, but not by 
much. 

 

  

  

Memory Depth, K �    

  
  

 

  

  

T
S

te
p
 (

s)
 �

 

Systolic 

Array 
PIM MPP Uniprocessor 

Legend: 
Air 
Water 
Fractal Plumbing 
Pulse 

Thin = Aerogel 

Thick=Realistic 
Thin Lines: 

Aerogel 

� Asymptotic 
scaling of full 

system 

   Thick Lines: 

Realistic 

� Ultimate 
Speed Limit per 

Physics 



                                        9/12 

nodes per chip. While the number of nodes (each holding K 

cells) is obviously limited by the maximum transistor capacity 

of a chip, there are other considerations as well. The chips 

may be deliberately under filled to avoid overheating or if I/O 

bandwidth becomes insufficient and would cause a bottleneck. 

The program performs this optimization by sweeping the 

number of nodes per chip and doing a performance model for 

each combination. 

For each candidate computer, the program finds the smallest 

Λ above minimum device sizes for which the system does not 

overheat. Inflating Λ has two effects, both of which decrease 

power consumption: it increases the surface area for heat 

outflow and decreases the speed (due to increased signal travel 

distance). These factors are monotonic but one is nonlinear, so 

iteration is required. 

The basic performance modeling code calculates the time 

step execution time and power consumption given all the 

assumptions above. The time step time will be a local compute 

time, a bandwidth component for “surface nodes,” and an 

“Allreduce” time dependent on the overall size of the 

machine. 

Figure 6 shows results from solving these equations. More 

specifically, the thin lines in figure 6 are the runtime of the 

Aerogel model using transistor parameters from Table I and 

the equations in the text of this article (the source code for the 

equations plotted is available in [DeBenedictis 04a], and are 

somewhat more detailed than the equations in this article). The 

thick lines in figure 6 are the result of a more realistic model. 

The realistic model uses the same basic transistors, but the 

transistors have “leakage” and are restricted to being on chips 

with heat sinks and limited pin bandwidth in accordance with 

the 2016 ITRS specifications [ITRS 02].  

Figure 6 shows the predicted running time per time step of 

the CTH algorithm for various computers. The horizontal axis 

is the number of cells per processor, K. The largest values of 

K correspond to a uniprocessor, with the entire problem in 

memory and a single CPU stepping through the cells one at a 

time. Values of K in the range of 1 billion represent Massively 

Parallel Processors (MPPs); values in the few thousands 

represent Processor In Memory (PIM), and values 

approaching 1 represent systolic arrays or signal processors. 

On the left hand side of figure 6 (position �), performance 

is very high due to large numbers of nodes yet ultimately 

limited by speed of light delays. On the rest of the graph 

(position �), performance falls off due to decreasing 

parallelism. The higher capacity coolants result in more 

performance due to the resulting machine being physically 

smaller and signals having less distance to travel. 

Figure 7 is a cost-efficiency analysis of the same computers. 

This graph plots the number of Teraflops available per dollar 

spent on a supercomputer per year. The program calculates 

this cost assuming each chip costs $1000 with 30% of the cost 

amortized each year, floor space costs $15/ft2/year, and 

electricity costs 15¢/KWH. 

Figure 7 illustrates the very small advantage of elaborate 

cooling methods for this problem.  The reader will see that the 

red graph representing air cooling is equal to or lower than any 

other option. This is because an air-cooled supercomputer 

must be slightly larger than other more powerful cooling 

methods. This causes a decrease in performance due to 

Figure 7. Cost Efficiency of Aerogel and Realistic Computer Models. Graph based on an economic model incorporating 
cost of equipment, electric power, and machine room space. Graph indicates broad peak of good efficiency. 

 

T
fl

o
p

s 
p

er
 $

/y
ea

r 
�

 

Thin Lines: 

Aerogel 

   Thick Lines: 

Realistic 

� Operating 
on one chip at 
“speed limit”  

� Region of 

Efficiency 

	 Giant 
Memories 

Mostly Idle 

Memory Depth, K �    
Systolic 

Array 

PIM MPP Uniprocessor 

Legend: 
Air 
Water 
Fractal Plumbing 

Pulse 

Thin = Aerogel 

Thick=Realistic 



                                        10/12 

increased signal travel distance.  

By performing this analysis, I claim to have shown that we 

have the technology to approach the theoretical limit of 

performance for an irreversible logic computer running the 

type of problem in figure 2. Through figure 4, I have shown 

that the semiconductors described in the ITRS roadmap are 

close enough to ideal that they may be used as a stand-in for 

ideal with only bounded uncertainty. Figure 6 shows that we 

understand architecture well enough to exploit these 

semiconductors to the point of only bounded inefficiency. 

Bounded means within an order of magnitude. 

VII. WHAT BREAKTHROUGHS ARE NEEDED? 

As an employee for a National Lab and thus somewhat 

associated with the US Government, the author is interested in 

knowing what new technologies the Government will need to 

fund to achieve performance at the Petaflops level and above. 

Figure 6 was based on Silicon CMOS technology according 

to the ITRS roadmap for 2016 [ITRS 02]. It is widely believed 

that the semiconductor industry will develop this technology 

for commercial purposes without Government intervention. 

Figure 6 assumes embedded memories. The ITRS roadmap 

predicts that embedded DRAM will be developed 

commercially for System On Chip (SOC) purposes without 

Government intervention. The industry is also developing 

System On Package (SOP) technology (where logic and 

memory chips are “glued” together to create an effect similar 

to SOC) [Tummala 99] that may be a suitable alternative. 

To achieve sufficiently low signal latency, these algorithms 

require signals to flow in all three dimensions at the system 

level. The diagram in figure 8 is the author’s depiction of how 

the necessary structure could be created using commercial 

parts. Figures 8A and 8B depict a 3D structure comprised of 

standard PC boards. The PC boards have processor chips and 

power regulators on one side and memories on the other. The 

chips then connect through side connectors that are unusual 

X 
Dimension 

Wiring 

Z 
Dimension 

Wiring 

Y 
Dimension 

Wiring 

Figure 8A: Mapping of 3D Mesh to Physical Structure Figure 8B: Three Dimensional Packaging 

Wall with pressure 
differential to draw 
air through structure. 

Figure 8C: Air-cooled configuration Figure 8D: Serviceability 



                                        11/12 

but commercially used in the Cray 3D and X1 and available 

commercially from Intercon Systems. Signals can thus flow in 

all three dimensions. A diagram of a machine with both the 

necessary cooling structure and 3D signal flow is shown in 

figure 8C. The grid structures in 8B and 8C are the same but at 

different scales. The side connectors from Intercon permit 

disassembly and repair as shown in 8D. The point of this 

analysis is to report that very little new technology is needed 

to reach the potentials of supercomputing – at least beyond 

semiconductors that will be developed anyway. 

VIII. THE MULTI-ARCHITECTURE APPROACH 

We anticipate a fundamental shift in supercomputer 

architecture driven by trends independent of supercomputing 

but to its advantage. As a field, computer architecture was 

invented in an era when transistors were expensive. As a 

result, architecture has been seen as a zero-sum game: each 

architect tries to find the “best” way to organize the gates in a 

computer so that their architecture can be the one used to build 

the computer. Due to economies of scale, the microprocessor 

has emerged as the universal architecture. However, power 

and cooling are replacing transistor count as the limiting factor 

on chips and shifting the assumptions that drove the 

ascendancy of the microprocessor. It is becoming increasingly 

feasible to put multiple architectures on the same chip, as long 

as they are not all powered-on at one time. We project a new 

era where a chip will contain multiple architectures (call each 

a logic block), each chosen because it is useful for a subset of 

applications. This approach has been used implicitly by the 

advocates of many innovative architectures [IRAM 03, Davis 

04, Sterling 02, Upchurch 03, Sunaga 96]. 

Figure 9 illustrates a multiple architecture chip of with no 

more than a 25% overhead due to the features that create the 

flexibility. This chip is comprised 75% of Dynamic Random 

Access Memory (DRAM), which can total multiple gigabytes 

in a decade or so and plenty for a supercomputer node. 

Memory consumes chip real estate, but does not consume very 

much power 

Figure 9 also shows three logic blocks, or “architectures.” 

Let us assume that one is a microprocessor and the other two 

are drawn from the set of popular alternative architectures, 

such as PIMs, vector units, reconfigurable logic, FPGAs, and 

specifically logic of the type discussed in this paper. Each of 

the logic blocks is drawn as a notched square to indicate that it 

may draw no more than 75% of the power budget for the chip. 

The power supply (Vdd) is drawn as switched to keep the chip 

from overheating due to multiple logic blocks being turned on 

an creating too much heat. 

IX. CONCLUSIONS 

In writing this paper, my objective was to flesh out the 

widely held belief that Moore’s Law would double 

supercomputer performance every couple years and thereby 

generate more scientific discoveries, better weapons, or other 

things of value to society – noting that this analysis has 

narrowly defined supercomputing as “simulating physics on a 

computer.” 

The validity of the assertion above depends on whether we 

are willing to embrace technological change: 

If we take a broad view of supercomputing technology, we 

can find techniques (in the field of “physics and computation”) 

that suggest there is no upper bound to supercomputer 

performance. There is also a constructive course of action that 

could plausibly raise supercomputer performance to the 

Zettaflops level, thus reaching the performance limit of the 

very most ambitious applications. 

However, Moore’s Law is strictly defined as a doubling of 

the number of transistors on a chip every couple years. If we 

restrict ourselves to advances based on transistors (or current 

forms of computer logic or microprocessors), we find that the 

restriction is associated with a lower limit on supercomputer 

performance that brings us clearly below the level of some 

applications. However, I showed in sections V-VIII that we 

can reach these limits with little risk. 

While this paper exposes some technical ideas, the ultimate 

question about how far and how fast to pursue supercomputer 

technology remains unanswered. I have demonstrated that a 

natural progression of current technology will raise 

performance high enough to embrace most of the applications 

currently envisioned without extensive technology 

development or building substantially larger machines. Will 

this be sufficient? Sufficiency would be supported if the 

applications community were to decide their current 

projections were too large, our Government finds more money 

to build large supercomputers of current designs, and no larger 

applications are found. The reverse could be true as well. 

REFERENCES 

[Anantharam 04] V. Anantharam, M.  He, K. Natarajan, H. Xie, M. Frank, 
“Driving Fully-Adiabatic Logic Circuits Using Custom High-Q MEMS 
Resonators,” 2004 workshop on Methodologies for Low Power Design, part 
of ESA ’04  (Embedded Systems and Applications). Paper in PDF format at 
http://www.cise.ufl.edu/research/revcomp/AdiaMEMS/MLPD-04.pdf. 

Chip Supporting Three 

Functions + Memory 

Memory   

Vdd   

Figure 9. Multi-Architecture. Memory consumes 75% of chip 
area, but insignificant power. Each logic block consumes 75% of 
chip’s power budget when turned on (only one on at a time) but 
insignificant area. 

 

µP 

LB1 

LB2 



                                        12/12 

[Bennett 89] Charles H. Bennett, “Time/Space Trade-Offs for Reversible 
Computation,” SIAM Journal of Computing, Vol. 18, No. 4, pp. 766-776, 
August 1989. 

[BGL web] IBM Blue Gene/L system, 
http://www.research.ibm.com/bluegene/. 

[Brightwell 04] Ron Brightwell, William J. Camp, Ben Cole, Erik 
DeBenedictis, Robert W. Leland, “Architectural Specification for 
Massively Parallel Computers -- An Experience and Measurement-Based 
Approach” To appear in Concurrency: Practice and Experience in 2004. 

[Christopher 04a] Thomas W. Christopher, “Radiation Transport Algorithms 
on Trans-Petaflops Supercomputers of Different Architectures” Sandia 
National Laboratories Technical report SAND2003-2814, August 2003 

[Christopher 04b] Thomas W. Christopher, "Pressures the Radiation Transport 
Problem Places on Future PIM-Based Supercomputer Designs," Workshop 
on Software for Processor-In-Memory Based Parallel Systems held in 
conjunction with the Second Annual IEEE/ACM International Symposium 
on Code Generation and Optimization, March 21, 2004. 

[CTH web] Sandia maintains a Web site for the CTH program: 
http://www.cs.sandia.gov/departments/9232/cth/. 

[Davis 04] Kei Davis, Adolfy Hoisie, Greg Johnson, Darren Kerbyson, Mike 
Lang, Scott Pakin, Fabrizio Petrini “Blue Gene: A Performance and 
Scalability Report at the 512-Processor Milestone, Los Alamos National 
Laboratories unlimited release technical report LA-UR- 04-1114. 

[DeBenedictis 04a], Erik P. DeBenedictis, “Taking ASCI Supercomputing to 
the End Game,” Sandia National Laboratories SAND report SAND2004-
0959, March 2004. Sandia technical reports are available by going to 
http://www.sandia.gov and accessing the technical library. 

[DeBenedictis 04b], Erik P. DeBenedictis, “Matching Supercomputing to 
Progress in Science,” July 2004. Presentation at Lawrence Berkeley 
National Laboratory, also published as Sandia National Laboratories SAND 
report SAND2004-3333P. Sandia technical reports are available by going to 
http://www.sandia.gov and accessing the technical library. 

[Denker 94] J. S. Denker. “A review of adiabatic computing,” in 1994 IEEE 
Symposium on Low Power Electronics. Digest of Technical Papers, pp 94-
97, 1994. 

[Drexler 92] Drexler, K. Eric., “Nanosystems: Molecular Machinery, 
Manufacturing, and Computation,” John Wiley & Sons, Inc., 1992. 

[Feynman 82] Richard P. Feynman, “Simulating Physics with Computers,” 
International Journal of Theoretical Physics, Vol. 21. Nos. 6/7, 1982. 

[Forsberg 03] Erik Forsberg, “Electronic and Photonic Quantum Devices,” 
Doctoral Dissertation, Department of Microelectronics and Information 
Technology, Royal Institute of Technology Stockholm. 

[Frank 97a] Michael P. Frank, “The R programming language and compiler.” 
http://www.cise.ufl.edu/~mpf/rc/memos/M08/doc/doc.html. [Frank 97b] 
Michael P. Frank, “Ultimate theoretical models of Nanocomputers,” 
Nanotechnology 9 (1998) 162-176. 

[Frank 99] Reversibility for Efficient Computing, Michael P. Frank, MIT Ph. 
D. thesis, 1999. 

[Fredkin 82] E. Fredkin and T. Toffoli, "Conservative logic," International 
Journal of Theoretical Physics, vol. 21, no. 3/4, pp. 219-53, 1982. 

[Han 02] Jie Hand and Pieter Jonker, “A System Architecture Solution for 
Unreliable Nanoelectronic Devices,” IEEE Transactions on 
Nanotechnology Vol. 1, No. 4 (2002) 201-208. 

[Hoisie 00] Adolfy Hoisie, Olaf Lubeck, Harvey Wasserman, “Performance 
and Scalability Analysis of Teraflop-Scale Parallel Architectures Using 
Multidimensional Wavefront Applications,” in The International Journal of 
High Performance Computing Applications, Sage Science Press, Volume 
14, Number 4, Winter 2000. 

[IRAM 03] Overcoming the Limitations of Conventional Vector Processors", 
C. Kozyrakis, D. Patterson. 30th International Symposium on Computer 
Architecture, San Diego, CA, June 2003. 

[ITRS 02] International Technology Roadmap for Semiconductors, 
http://public.itrs.net. All figures used in this report refer to the ITRS 2002 
update. 

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” 
Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on 
Internet. 

[Kerbyson 01] Darren J. Kerbyson, Hank J. Alme, Adolfy Hoisie, Fabrizio 
Petrini, Harvey J. Wasserman, and Michael Gittings, “Predictive 

Performance and Scalability Modeling of a Large-Scale Application, , in 
Proc. of IEEE/ACM SC2001, Denver, November 2001. 

[Kim 01] Kim, S., Zeisler, C., Papaefthymiou, M., "A True Single-Phase 8-bit 
Adiabatic Multiplier," in proceedings of the 2001 Design Automation 
Conference, pp. 758-763. 

[Kung 82] Kung, H. T. "Why Systolic Architectures?," Computer, vol. 15, no. 
1, pp. 37-46, 1982. 

[Legoas 04] S. Legoas, V. Coluci, S. Braga, P. Coura, S. Dantas, and D. 
Galvão, “Gigahertz nanomechanical oscillators based on carbon 
nanotubes,” Nanotechnology 15 (2004) S184–S189. 

[LACSI 04] “The Path to Extreme Computing,” workshop in association with 
the Los Alamos Computer Science Institute Symposium, October 12, 2004. 

[Laundauer 61] Landauer, R., “Irreversibility and heat generation in the 
computing process,” IBM J. Res. Dev. 5, 183-191, 1961. 

[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. 
Rotman, “High-End Computing in Climate Modeling,” contribution to 
SCaLeS report. 

[Merkle 96] R. Merkel, E. Drexler, “Helical Logic,” Nanotechnology (1996) 
325-339. 

[MPI web] See Message Passing Interface (MPI) forum standards documents, 
http://www.mpi-forum.org/. 

[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. 
Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, 
“Compute as Fast as the Engineers Can Think!” NASA/TM-1999-209715, 
available on Internet. 

[NASA 02] NASA Goddard Space Flight Center, “Advanced Weather 
Prediction Technologies: NASA’s Contribution to the Operational 
Agencies,” available on Internet. 

[Petrini 03] Fabrizio Petrini, Darren Kerbyson and Scott Pakin, “The Case of 
the Missing Supercomputer Performance, Achieving Optimal Performance 
on the 8,192 processors of ASCI Q,” in Proc. of IEEE/ACM SC2003, 
Phoenix, AZ, November 2003. 

[Sair 03] Suleyman Sair, Timothy Sherwood, and Brad Calder, “A Decoupled 
Predictor-Directed Stream Prefetching Architecture,” IEEE Transations on 
Computers, Vol. 52, N0. 3, March 2003. 

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 
24-25, proceedings on Internet a http://www.pnl.gov/scales/. 

[Seitz 85] C.L. Seitz, A. Frey, S. Mattisson, S. Rabin, D. Speck, V. van de 
Snepscheut, “Hot-clock NMOS,” in Proc. of the 1985 Chapel Hill 
Conference on VLSI, 1985. 

[Sterling 02] Thomas .L. Sterling and H.P. Zima. “Gilgamesh: A 
Multithreaded Processor-In-Memory Architecture for Petaflops 
Computing.” Supercomputing02, Baltimore, Maryland, November 18-22, 
2002. 

[Sunaga 96] Sunaga, T., Peter M. Kogge, et al, "A Processor In Memory Chip 
for Massively Parallel Embedded Applicatiions," IEEE J. of Solid State 
Circuits, Oct. 1996, pp. 1556-1559. 

[Timler 03] J. Timler  an C.S. Lent, “Maxwell’s demon and quantum-dot 
cellular automata,” Journal of Applied Physics 94, 1050-1060 (2003). 

[Tummala 99] Rao R. Tummala and Vijay K. Madisetti,  “System on Chip or 
System on Package?” in IEEE Design and Test of Computers, April 1999, 
Vol. 16 No. 2, pp. 48-56 

[Upchurch 03] E. Upchurch, T. Sterling and J. Brockman. “Analysis and 
Modeling of Advanced PIM Architecture Design Tradeoffs,” in 
Proceedings of the 6th International Workshop on Innovative Architecture 
for Future Generation High-Performance Processors and Systems 
(IWIA03), p66-77, 2003. 

[Vieri 98] Carlin Vieri, M. Josephine Ammer, Amory Wakefield, Lars 
`Johnny' Svensson, William Athas, and Tom Knight, ``Designing reversible 
memory,'' in C. S. Calude, J. Casti, and M. J. Dinneen, eds., Unconventional 
Models of Computation, Springer, 1998, pp.386--405. 

[Vieri 99] Vieri, Carlin, “Reversible Computer Engineering and 
Architecture,” Ph. D. Thesis, Massachusetts Institute of Technology 1999. 

[Vitanyi 88] Vitanyi, P. M. B., “Locality, communications, and interconnect 
length in multicomputers,” SIAM J. on Computing, 17, 4 (1988), 659-672. 

[von Neumann 56] von Neumann, J., “Probabilistic Logics and the Synthesis 
of Reliable Organisms from Unreliable Components,” in C. E. Shannon and 
J. McCarthy, Eds. Automata Studies. Princeton: Princeton University Press, 
pp. 43-98, 1956. 

 


	The Need for FLOPS
	Defining Simulation of Physics on a Computer
	Quantifying the End of the Current Trend for Supercomputer Performance
	Beating The Limits of Current Technology
	Can We Reach The Limit?
	An Example
	What Breakthroughs Are Needed?
	The Multi-Architecture Approach
	Conclusions



